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We study the nonlinear response of a noisy bistable system to a biperiodic signal through experiments with
an electronic circuit �Schmitt trigger�. The signal we use is a biharmonic one, i.e., a superposition of low and
high frequency harmonic components. It is shown that the mean switching frequency �MSF� of the system can
be locked at both low and high frequencies. Moreover, the phenomenon of MSF locking at the lower frequency
can be induced and enhanced by the higher frequency excitation. Thus high frequency bias can control
synchronization at the low frequency.
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I. INTRODUCTION

The transformation of signals in a noisy environment by
nonlinear systems through which they pass has attracted
much attention over many years. Several nontrivial and at
first sight surprising phenomena have been observed and
studied. One example is the phenomenon of stochastic reso-
nance �SR� �1�, which is of great interest and importance
�2–4�. SR is a cooperative nonlinear effect that is observed in
a wide range of nonlinear systems simultaneously driven by
noise and a weak signal. The output signal-to-noise ratio, or
other measure of coherence, can be optimized for a particular
noise level, so that it possesses a bell-shaped curve when
plotted as a function of noise intensity. Depending on the
amplitude of the signal one can distinguish linear and non-
linear regimes of system response. Theoretical studies and
analog simulations of SR have shown that, for a weak signal,
the phenomenon can be correctly described within the frame-
work of linear response theory �5�. In this regime the system
response does not depend on signal parameters, for example,
on spectral structure, but it does depend on system nonlin-
earity and noise. The opposite case is a nonlinear regime,
when the amplitude of the signal is strong enough. A variety
of nonlinear effects can then be observed. The generation of
higher harmonics and spectral holes has been investigated in
detail �6–8�. The influence of the signal’s spectral structure
on the signal-to-noise enhancement was discussed in �9�.
Within the nonlinear regime, synchronization of the stochas-
tic switching dynamics by the periodic force becomes ame-
nable to direct observation. In �10� it was shown that the
mean switching frequency �MSF� of a noisy bistable system
can be locked over a finite range of noise intensities, so that
a region of synchronization very similar to an Arnold’s
tongue can be plotted in the parameter plane noise intensity
vs signal amplitude. Inside this synchronization region the
MSF appears to be locked by the periodic signal. In �11� a
further generalization was made: it has been shown that the
synchronization of switching can also be realized for a ran-
dom spike train, i.e., the effect is relevant for information-
carrying signals. An experimental study of the effect in a

biological system was reported in �12�; the phenomenon is
important for the understanding of signal processing in a
neuronal system, since it specifies the conditions under
which noise induces a regime of complete �optimal� informa-
tion transmission and simultaneously it is observed in a wide
range of noise amplitudes.

The effects described above were observed for signals
with a single dominant time scale �27�. In real systems, how-
ever, it is often the case that there may be several superim-
posed signals with different time scales. Such superposition
can result from the mixing of a signal with jamming inter-
ference in a radio transmission, or in the activity of two
distinct areas of a neural network. In the case of a weak
signal, the presence of additional components does not
change the transformation of each individual component.
However, for a larger signal, interactions between its com-
ponents and the system nonlinearity will play a role. Indeed,
a number of phenomena have been observed in the specific
case of two-component signals, e.g., an experimental realiza-
tion of noise-enhanced heterodyning in a bistable optical sys-
tem �13�. Another interesting effect is the so-called ghost
resonance �14� observed in bistable systems forced by noise
and a signal that consists of two close harmonic components.
In the latter case, system nonlinearity produces the SR effect
for a beat frequency. The possible relevance of ghost reso-
nance for signal processing in auditory systems has been
widely discussed �14,15�. In �16� the noise was replaced by a
high-frequency harmonic excitation with a much higher fre-
quency than the signal. An SR-like behavior of the spectral
gain factor was observed, an effect that was named vibra-
tional resonance, and a maximum of the gain factor is ob-
served by transition from sub- to suprathreshold excitation.
The presence of noise induces gain degradation in vibra-
tional resonance �17–19�.

In the present paper we investigate switching synchroni-
zation of a noisy bistable system due to a biperiodic signal
consisting of low and high frequency components. Thus we
introduce two different time scales into the signal. There are
several motivations for the study. First, as it is well known,
classical SR is a low-frequency phenomenon, i.e., it is at its
most pronounced for low frequency signals. The questions
that arise here are whether an additional high frequency bias
can control synchronization at the low frequency or, con-
versely, how the low frequency bias changes the system re-
sponse to the high frequency component. Another motivation
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relates to possible applications of SR for the transmission
and enhancement of information-carrying signals. The sim-
plest model of such a signal is a superposition of harmonic
signals with different amplitudes and frequencies. We con-
sider the case of two harmonic components with frequencies
that differ by a factor of ten. To investigate the problem, we
choose a simple bistable system in the form of an electrical
circuit �the Schmitt trigger�. The paper is organized as fol-
lows. In Sec. II we introduce the model and specify the ex-
perimental setup. The measures that we apply to quantify the
synchronization phenomena are discussed in Sec. III. The
results of the measurements are discussed theoretically in
Sec. IV and the conclusions drawn are summarized in Sec. V.

II. EXPERIMENTAL ARRANGEMENTS

To analyze the switching process we chose an archetypal
system demonstrating pure two-state dynamics: the Schmitt
trigger, for which a schematic circuit and its hysteresis char-
acteristics are presented in Fig. 1. An ideal Schmitt trigger
circuit driven by external force F�t� obeys the equation

Uout = sgn��U − F�t�� , �1�

where “sgn” is the sign function and the threshold values �U
are defined by resistors R1 and R2:

�U =
R1

R1 + R2
Uout, �2�

where the output voltage Uout= ±U0 is equal to either the
positive or negative voltage ±U0 of the power source. The
value of the output voltage is controlled by external force
F�t�, i.e., if F�t�� ��U� the trigger is in its upper state +U0, if
F�t��−��U�, then it is in the state −U0. Equation �1� de-
scribes the circuit correctly provided that the relaxation rate
of the trigger is the fastest scale and that it is much shorter

than either the signal time scale or the correlation time of the
noise.

A Gaussian noise generator, used as a noise source ��t�,
produces colored noise with a Lorentzian spectrum, charac-
terized by a cutoff frequency of 100 kHz. The noise under-
goes additional filtering by a circuit element �mixer�, so that
the tail of the spectrum at the trigger input differs from the
Lorentzian. The noise energy is characterized by its root-
mean-square amplitude � as measured by an rms voltmeter.
Two independent harmonic signal generators are used to pro-
vide the two-frequency force. The circuit response is digi-
tized by an analog-to-digital converter �ADC� and passed to
a computer for analysis. The ADC was a DAS-1600 with a
maximum sampling rate of 105 points per second in the re-
gime of input buffering. The relaxation rate of the trigger
was 1 MHz.

From such a two-frequency signal Fs�t� one can single out
its low-frequency �LF� and high-frequency �HF� components
as

Fs�t� = AL sin�2�fLt� + AH sin�2�fHt� , �3�

where fL and fH are the frequencies, and AL and AH are the
amplitudes, of the LF and HF parts, respectively. It is intu-
itively evident that the two time scales in such a regular force
must lead to a mutual influence of each component on the
other. Let us fix the threshold level ��U � =�*=470 mV and
consider the response of the Schmitt trigger forced by the
two-frequency signal Fs�t� and colored noise ��t�:

Uout = sgn��U − Fs�t� − ��t�� . �4�

For convenience of representation of the results, the ampli-
tudes of the regular signal AL and AH, as well as noise am-
plitude �, are normalized by the value of the same threshold
level �*. For the theoretical discussion, all values of frequen-
cies used in experiments were normalized by 1 kHz.

In our experiments the regular signal is subthreshold, AL
+AH��U, and all the switchings between states are there-
fore induced by noise. So the experiment differs from the
arrangement used for vibrational resonance and corresponds
to the usual conditions used for SR and MSF locking studies.

We set the signal frequencies arbitrarily at fL=100 Hz and
fH=1006 Hz and analyze the influence of each component of
the composite two-frequency �biharmonic� signal on stochas-
tic synchronization. Note that although the ratio between the
selected frequencies fL and fH is rational, and that the signal
is consequently periodic, this fact is not important in itself
here since the period of signal is much larger than the peri-
ods of both the LF component and the measurement time.
Moreover, if we choose a signal period equal to one period
of the LF component, e.g., fH=nfL �n�10 is integer�, all the
effects to be discussed below will be observed and additional
fine structure will appear in the phase distribution. In other
words, since the frequencies fL and fH differ by one order of
magnitude, the observed effects do not depend on whether
the ratio between the frequencies is rational or irrational.

III. STOCHASTIC SYNCHRONIZATION

The effect of MSF locking by an external harmonic signal
was reported in �10� and it was shown that this phenomenon

(a)

(b)

FIG. 1. A circuit diagram of Schmitt trigger �a� and its �ideal-
ized� input-output hysteresis characteristic �b�.
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can be considered as an example of stochastic synchroniza-
tion �11,12,20,21�. In contrast with synchronization in deter-
ministic systems, stochastic synchronization considers inter-
action between a number of processes one or several of
which is or are random. For example, when the MSF is
locked, the harmonic signal controls the stochastic switch-
ings of the bistable system and, within a certain interval of
noise intensities, the MSF coincides with the frequency of
the periodic signal. For a symmetrical bistable system, the
locking of the MSF is defined by the probability that a ran-
dom process crosses a boundary �barrier� between the states
for a specific range of signal phase. In the presence of a
harmonic signal this boundary is periodically nonstationary
and stochastic synchronization is observed under the condi-
tion that the first passage time to the boundary +��U �
+A sin 	 for 	� �� ,2�� tends to infinity, whereas the pas-
sage to the boundary +��U � +A sin 	 for 	� �0,�� occurs
during a finite time that is less than half the period of the
signal. That is, the phase intervals in which a switching does
or does not occur are strongly emphasized. The switching for
the values of signal phase 	� �0,�� for which the probabil-
ity of transition to a state is larger than the probability tran-
sition to another state can be determined as in-phase switch-
ing. Otherwise, one can speak of out-of-phase switching.
Note that, in contrast to the classical usage of the terms “in-
phase” and “out-of-phase,” a phase interval is meant here.
Within the approximation that the switching probability is
equal to unity for switching in-phase, and to zero for switch-
ing out-of-phase, the situation corresponds to stochastic syn-
chronization. Thus the effect of MSF locking can be consid-
ered as the phenomenon of phase and frequency stochastic
synchronization.

The conditions of MSF locking formulated above are of
course subject in practice to finite observation time. If an
ideal source of Gaussian noise is applied, satisfaction of the
strict condition that the switching probability is equal to zero
�in a theoretical limit of infinite observation time� at a given
phase is impossible because of the nonvanishing tail of the
noise distribution. But, since the tail is exponential, and the
observation time is in reality finite, satisfaction of the syn-
chronization condition depends on the parameters of system
and forcing. In practice, one can compare the switching
probability with a small constant value instead of with zero.

The switching process in a bistable system can be charac-
terized by the MSF and the evolution of the residence time
distribution p�
� and phase �or cycle� distribution p�	� �22�.
The phase distribution p�	� estimates the probability of
switching at the given phase 	 of the harmonic signal. In the
case considered one can separately introduce the phase dis-
tributions for the LF p�	L� and HF p�	H� harmonic compo-
nents. The residence time p�
� is the time interval 
 between
two successive switchings. The MSF �f� is defined by the
residence time distribution as follows:

�f� = � lim
t�→�

2

t�
	

0

t�

p�
�d

−1

. �5�

In the experiments, a thousand switching events were col-
lected to evaluate the MSF and the corresponding distribu-

tion for each set of parameters. The trigger output signal and
the signal from the lower-frequency harmonic generator
were simultaneously recorded to determine the switching
phase. The moments of switching and values of the switch-
ing phase were calculated using a linear interpolation of
points in the time series.

IV. EXPERIMENTAL RESULTS AND THEORETICAL
CONSIDERATIONS

First, the evolution of the system response was measured
as the amplitude of the HF component was increased, keep-
ing the amplitude of the LF component fixed at AL=0.2.
Figure 2�a� plots the mean switching frequency as a function
of the input noise amplitude � for different values of the HF
amplitude AH. In the absence of the HF part of the signal, the
MSF increases monotonically �dashed line� in the range of
low frequency fL. As the amplitude of the HF component
increases, switchings occur for smaller values of noise am-
plitude, and flat regions corresponding to synchronization
can be observed. The latter expand with increasing strength
of the HF component. Thus the regime of MSF locking at
low frequency has been realized by application of the higher
frequency external excitation. To compare the influences of
the HF component and variations in the threshold value for
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FIG. 2. �Color online� Experimental results obtained from the
circuit model shown in Fig. 1. �a� The mean switching frequency
�MSF� �f� is plotted as a function of noise amplitude � �dimension-
less units� for different combinations of amplitudes of the two-
frequency signal with �U=1. The full curves correspond to AL

=0.2 and AH=0 �line 1�, AH=0.43 �line 2�, AH=0.64 �line 3�, AH

=0.7 �line 4�; the dashed curve corresponds to AL=0, AH=0.7. �b�
Plots of the MSF �f� as a function of � for different values of the
threshold: �U=1 �line 1�, �U=0.9 �line 2�, �U=0.34 �line 3�,
�U=0.25 �line 4�. The HF component is absent AH=0 and the
amplitude of LF component AL=0.2.
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harmonic signal the plots of �f� vs � for different thresholds
are presented in Fig. 2�b�. Note that the curve 1 is the same
for both figures �a� and �b�, but it is shown for different
ordinate scales. As it is seen, the increase in amplitude of the
HF component is qualitatively equivalent to a decrease in the
threshold value: the curves shift to the direction of smaller
noise amplitude and the synchronization regime is observed.
Below we provide additional support of this equivalence.

For AH=0.7 �curve 4 in Fig. 2�a��, the MSF is constant in
two regions of noise amplitude. In the first one, the MSF
coincides with the low frequency fL and, in the second one,
with the high frequency fH. Let us consider this situation.

Without LF bias, the locking of the MSF at fH has been
realized �dashed curve in Fig. 2�a��. In the presence of the LF
component with A=0.2 a region of synchronization at fre-
quency fL arises and the synchronization area for frequency
fH decreases. Thus the locking of the mean switching fre-
quency is realized at both frequencies fL and fH.

To understand how the HF component influences the re-
sponse of the trigger to the LF component, we can average
over the fast time scale TH=1/ fH. The threshold-crossing
rate for a Gaussian process in the limit of adiabatic driving
takes the following form �23� �see also �24–26���28�:

r±�t� =
1

2�
�− K��0�exp�−

��U − Fs�t��2

2�2 
; �6�

here K��0� is the second derivative of the autocorrelation
function of the noise �in the current experiment, �K��0� �
=0.02 ms �29��, the positive sign corresponds to the thresh-
old value +��U� and switching to the state +U0, whereas the
negative sign corresponds to −��U� and switching to the state
−U0. To evaluate the crossing rate averaged over TH, we
introduce the rate with an effective threshold �Ue:

r+ =
1

2�
�− K��0�exp�−

��Ue�2

2�2 

=

1

2�
�− K��0�

1

2�
	

−�

�

exp�−
���U� − AH cos 	�2

2�2 
d	 .

�7�

Then using a Gaussian approximation of the integrand in the
form exp�−	2 /2�	

2 +C�, where �	 and C are unknown con-
stants defined for 	=0 and 	=� /2, one can obtain the ex-
pression for the effective threshold �Ue,

��Ue�2 = ���U − AH��2 − 2�2 ln���

2s1
erf�s1�
 , �8�

where

s1 =
�2AH�2��U� − AH�

�
.

Consequently, the HF excitation effectively decreases the
value of the threshold for the LF component. In term of
effective threshold the time-dependent crossing rate for the
LF component is

r±�t� =
1

2�
�K��0�e�−�±�Ue − ALsin�2�fLt��2/2�2�. �9�

The MSF can be obtained by using the time-periodic solution
of the master �rate� equation for the population n±�t� of the
states +U0 and −U0 �21,22�:

�f� = fL	
0

TL

r−�t�n+�t�dt . �10�

The rate equation has the form �21,22�

ṅ+ = − r−n+ + r+n−,

ṅ− = − r+n− + r−n+ �11�

and is solved numerically starting, for example, with identi-
cal initial conditions: n+�0�=n−�0�=0.5; then, after a tran-
sient time, the time-periodic solution is used in Eq. �10�.

The theoretical and experimental results presented in Figs.
2 and 3�a� clearly show that increasing the amplitude of the
HF component leads to a decrease in the threshold value for
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FIG. 3. �Color online� Comparison of experimentally measured
�data points� and calculated �full curves� MSFs �f� as functions of
noise amplitude � �dimensionless units�. The dashed lines connect-
ing data points are guides to the eye. �a� The influence of the HF
component on MSF locking at the low-frequency fL. The data
points � correspond to the parameter set �U=1, AL=0.2, and AH

=0; � to �U=1, AL=0.2, and AH=0.7; � to �U=0.25, AL=0.2,
and AH=0. �b� The influence of the LF component on MSF locking
on the high-frequency fH. The data points � correspond to the
parameter set: �U=1, AL=0, and AH=0.7; � to �U=1, AL=0.2,
and AH=0.7.
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the LF component and hence induces MSF locking on fre-
quency fL. The agreement between experiment and theory
can be considered satisfactory.

The experimental results also show clearly that, in turn,
LF bias influences synchronization at fH. Without the LF
component there is a wide region of MSF locking on fH
�dashed line in Fig. 2�a��; the LF component induces a sig-
nificant decrease of the region �curve 4�. The presence of LF
part can be considered to produce a slow trend in the signal.
In this case the synchronization conditions for the HF
component should be modified by replacing �U with
�U−AL cos�2�fLt�. The periodic change of the threshold
can be approximated by a step function �U−2AL /
� sgn�cos�2�fLt��, i.e., for one half period the threshold is
�U−2AL /� and for the other half it is �U+2AL /�. Then we
can calculate two MSFs �10� for the two threshold values
separately, and estimate the resultant MSF as the mean of
these two. This approach is valid for �f�
 fL. The curve to
which it leads fitted the experimental results quite well �Fig.
3�b��. Thus the presence of a slow trend leads to a degrada-
tion of stochastic synchronization.

We now consider the distributions of residence times p�
�
and phases p�	� in the synchronization regime with both
components of the forcing frequency Fs�t�. For this purpose
we plot distributions p�
� and p�	� before, at the moment of,
and after synchronization at frequencies fL and fH �Figs. 4
and 5�. The solid �blue� line corresponds to the HF compo-
nent and the dashed �red� line to the LF component in the
plots of p�	�. The dependences of the amplitude of a har-
monic signal on phase are shown by the dotted lines.

If the mean switching frequency is smaller than the low
frequency fL, the distribution p�
� consists of two sharply
pronounced time scales. One scale is defined by the period
TL of the LF component, the other is defined by TH. As
shown in Fig. 4�a� the structure of exponentially decreasing
peaks centered at TL /2+nTL �n=1,2 . . . � is modulated by the

frequency fH. The distribution p�	� shows that the switch-
ings are in-phase for both components, and the phases of the
LF and HF components lie within the interval from 0 to �. In
the region of synchronization at fL a plot of the residence
time distribution demonstrates several peaks �Fig. 4�b��, their
envelope corresponding to the synchronization by a har-
monic signal. For both components, the switchings are in-
phase and, for the LF component, the region of possible
switching phase is wider than for the HF part.

The distributions p�
� and p�	� after the breakdown of
synchronization at frequency fL are shown in Fig. 4�c�. Out-
of-phase switchings for the LF component appear but, for the
HF component, the distribution p�	� has nonzero values only
in a narrow region of phase located in the interval 	
� �0,��. The peaks in p�
� corresponding to the out-of-
phase switchings with respect to the LF component are de-
fined by the period of the HF part.

If the MSF is larger than the low frequency fL, but smaller
than fH, then the influence of the LF component is not seen
in either of the distributions p�
� and p�	� �Fig. 5�a��. The
peak locations in the distribution of residence times are de-
fined by the HF component alone: switchings occur in-phase
but the switching probability for any value of the low-
frequency phase is nonzero.

Figure 5�b� shows the plots of distributions for the regime
of synchronization at fH. The switchings occur every half
period of the HF component. The phase distribution for the
LF part is flat.

When out-of-phase switchings with respect to the HF
component appear, the synchronization at frequency fH
breaks down and a new short-time peak appears in the resi-
dence time distribution �Fig. 5�c��. For the HF component
the distribution p�	� includes phase intervals with zero
switching probability and two peaks, the distance between
them being equal to �. If the noise intensity is increased
further, the peak centered at the half period time is destroyed
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FIG. 4. �Color online� The distributions p�
� and p�	� in the
region of synchronization at fL �a� �f�� fL, �b� �f�= fL, �c� �f�� fL.
Time is normalized by the period of the LF component TL=1/ fL in
the plots of p�
�.
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FIG. 5. �Color online� The distributions p�
� and p�	� in the
region of synchronization at fH �a� �f�� fH, �b� �f�= fH, �c� �f�
� fH. Time is normalized by the period of the HF component TH

=1/ fH in the plots of p�
�.
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and the switching probability becomes nonzero for all phases
of the HF component, i.e., the switching process is then de-
fined by noise only �not shown�.

For both components of the two-frequency signal, the
evolution of the distribution p�	� up to the point of synchro-
nization breakdown can be characterized by the dependence
of the average phase on noise amplitude. Obviously, the
magnitude of the average phase coincides with the phase for
which the switching probability is maximal. At the moment
of switching, the average phase is close to � /2 and, with
increase of the noise amplitude, the value of the average
phase approaches zero. Consequently, the switching moment
is defined not only by the value of signal amplitude but also
by the sign of the derivative of the regular signal.

V. CONCLUSIONS

In summary, our investigation of stochastic synchroniza-
tion in a bistable system forced by a biharmonic signal al-
lows us to conclude that the phenomenon of synchronization

depends on relationships between the parameters of the sig-
nal’s components. Synchronization at the low frequency was
realized and enhanced by introduction of the higher fre-
quency excitation. Correspondingly, the region of MSF lock-
ing at the low frequency depends on the amplitude of the HF
bias. Locking of the MSF by both components of the regular
force can be realized, the locking of MSF by the LF compo-
nent being induced by the high-frequency excitation. The
effect of synchronization is defined by the time scales of both
components. On the other hand, for MSF locking by the HF
component, the presence of a slow trend �the LF component�
leads to a degradation of stochastic synchronization. These
results are important not only for physics but perhaps also
for biology as a possible mechanism of information trans-
mission by sensory neurons.
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